Специалисты из университета Кэйо в Японии решили древнюю математическую задачу о существовании прямоугольного и равнобедренного треугольников с одинаковой площадью и периметром, пишет Лента.ру со ссылкой на SoraNews 24.
Так, согласно выводам Йошиюки Хиракавы и Хидэки Мацумуры, существуют рациональный прямоугольный треугольник с гипотенузой, равной 377 сантиметрам (или другим единицам длины), и катетами, равными 352 и 135 сантиметрам соответственно, а также рациональный равнобедренный треугольник со сторонами, равными 366 сантиметрам, и 132-сантиметровым основанием. Периметр и площадь этих уникальных геометрических фигур равны, а других подобных пар не существует.
Японские исследователи доказали еще одну теорему, согласно которой не существует примитивного прямоугольного и примитивного равнобедренного треугольников, чьи периметр и площадь были бы равны. Примитивным треугольником называется фигура, у которой наибольший общий делитель длин его сторон равен одному.